Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.737
Filtrar
2.
Eur Heart J ; 45(15): 1355-1367, 2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38385506

RESUMO

BACKGROUND AND AIMS: Thromboxane (TX) A2, released by activated platelets, plays an important role in atherothrombosis. Urinary 11-dehydro-TXB2 (U-TXM), a stable metabolite reflecting the whole-body TXA2 biosynthesis, is reduced by ∼70% by daily low-dose aspirin. The U-TXM represents a non-invasive biomarker of in vivo platelet activation and is enhanced in patients with diabetes. This study assessed whether U-TXM is associated with the risk of future serious vascular events or revascularizations (SVE-R), major bleeding, or cancer in patients with diabetes. METHODS: The U-TXM was measured pre-randomization to aspirin or placebo in 5948 people with type 1 or 2 diabetes and no cardiovascular disease, in the ASCEND trial. Associations between log U-TXM and SVE-R (n = 618), major bleed (n = 206), and cancer (n = 700) during 6.6 years of follow-up were investigated by Cox regression; comparisons of these associations with the effects of randomization to aspirin were made. RESULTS: Higher U-TXM was associated with older age, female sex, current smoking, type 2 diabetes, higher body size, urinary albumin/creatinine ratio of ≥3 mg/mmol, and higher estimated glomerular filtration rate. After adjustment for these, U-TXM was marginally statistically significantly associated with SVE-R and major bleed but not cancer [hazard ratios per 1 SD higher log U-TXM (95% confidence interval): 1.09 (1.00-1.18), 1.16 (1.01-1.34), and 1.06 (0.98-1.14)]. The hazard ratio was similar to that implied by the clinical effects of randomization to aspirin for SVE-R but not for major bleed. CONCLUSIONS: The U-TXM was log-linearly independently associated with SVE-R in diabetes. This is consistent with the involvement of platelet TXA2 in diabetic atherothrombosis.


Assuntos
Diabetes Mellitus Tipo 2 , Neoplasias , Trombose , Humanos , Feminino , Tromboxanos/metabolismo , Tromboxanos/uso terapêutico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Aspirina/uso terapêutico , Tromboxano B2/uso terapêutico , Tromboxano B2/urina , Tromboxano A2/uso terapêutico , Tromboxano A2/urina , Trombose/tratamento farmacológico , Neoplasias/tratamento farmacológico
3.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396774

RESUMO

Platelets assume a pivotal role in the pathogenesis of cardiovascular diseases (CVDs), emphasizing their significance in disease progression. Consequently, addressing CVDs necessitates a targeted approach focused on mitigating platelet activation. Eugenol, predominantly derived from clove oil, is recognized for its antibacterial, anticancer, and anti-inflammatory properties, rendering it a valuable medicinal agent. This investigation delves into the intricate mechanisms through which eugenol influences human platelets. At a low concentration of 2 µM, eugenol demonstrates inhibition of collagen and arachidonic acid (AA)-induced platelet aggregation. Notably, thrombin and U46619 remain unaffected by eugenol. Its modulatory effects extend to ATP release, P-selectin expression, and intracellular calcium levels ([Ca2+]i). Eugenol significantly inhibits various signaling cascades, including phospholipase Cγ2 (PLCγ2)/protein kinase C (PKC), phosphoinositide 3-kinase/Akt/glycogen synthase kinase-3ß, mitogen-activated protein kinases, and cytosolic phospholipase A2 (cPLA2)/thromboxane A2 (TxA2) formation induced by collagen. Eugenol selectively inhibited cPLA2/TxA2 phosphorylation induced by AA, not affecting p38 MAPK. In ADP-treated mice, eugenol reduced occluded lung vessels by platelet thrombi without extending bleeding time. In conclusion, eugenol exerts a potent inhibitory effect on platelet activation, achieved through the inhibition of the PLCγ2-PKC and cPLA2-TxA2 cascade, consequently suppressing platelet aggregation. These findings underscore the potential therapeutic applications of eugenol in CVDs.


Assuntos
Eugenol , Embolia Pulmonar , Humanos , Camundongos , Animais , Eugenol/farmacologia , Eugenol/uso terapêutico , Eugenol/metabolismo , Fosfolipase C gama/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Modelos Animais de Doenças , Ativação Plaquetária , Agregação Plaquetária , Plaquetas/metabolismo , Fosforilação , Proteína Quinase C/metabolismo , Tromboxano A2/metabolismo , Colágeno/metabolismo , Embolia Pulmonar/tratamento farmacológico , Embolia Pulmonar/metabolismo , Fosfolipases A2 Citosólicas/metabolismo
4.
Nutr Metab Cardiovasc Dis ; 34(4): 1054-1060, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38233271

RESUMO

BACKGROUND AND AIM: This study aimed to assess the association between dietary inflammation index with serum Nitric oxide, Prostacyclin, and Thromboxane B2 among Prinzmetal angina patients and healthy persons. METHODS AND RESULTS: This case-control study was conducted among 120 Prinzmetal angina patients and 120 healthy persons referred to the Ardabil Imam Khomeini Hospital between 2021 and 2022. Blood samples were gained from all study participants for measurement of serum Nitric oxide, Prostacyclin, and Thromboxane B2. The serum Nitric oxide in patients who had higher DII was less than in patients with less dietary inflammation index (ß = -0.75 p = 0.02). The serum Prostacyclin level in patients with greater dietary inflammation index was 0.68 ng/ml less than in patients with less dietary inflammation index (ß = -0.68 p = 0.04). The level of serum Thromboxane B2 had a positive association with dietary inflammation index (ß = 0.81 p = 0.04). CONCLUSION: In Prinzmetal angina patients, more dietary inflammation index can increase the serum Thromboxane B2 and decrease the serum Nitric oxide and Prostacyclin. More clinical trial study is needed to confirm these results.


Assuntos
Angina Pectoris Variante , Epoprostenol , Humanos , Tromboxano B2 , Óxido Nítrico , Estudos de Casos e Controles , Inflamação/diagnóstico , Tromboxano A2
5.
J Leukoc Biol ; 115(1): 164-176, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-37170891

RESUMO

Asthma is the chronic pulmonary inflammatory response that could lead to respiratory failure when allergic reactions exacerbate. It is featured by type 2 immunity with eosinophilic inflammation, mucus, and IgE production, and Th2 cytokine secretion upon repeated challenge of allergens. The symptom severity of asthma displays an apparent circadian rhythm with aggravated airway resistance in the early morning in patients. Bmal1 is the core regulator of the circadian clock, while the regulatory role of Bmal1 in asthma remains unclear. Here, we investigate whether the myeloid Bmal1 is involved in the pathogenesis of house dust mite (HDM)-induced lung allergy. We found that knockdown of Bmal1 in macrophages suppressed the time-of-day variance of the eosinophil infiltration in the alveolar spaces in chronic asthmatic mice. This was accompanied by decreased bronchial mucus production, collagen deposition, and HDM-specific IgE production. However, the suppression effects of myeloid Bmal1 deletion did not alter the allergic responses in short-term exposure to HDM. The transcriptome profile of alveolar macrophages (AMs) showed that Bmal1-deficient AMs have enhanced phagocytosis and reduced production of allergy-mediating prostanoids thromboxane A2 and prostaglandin F2α synthesis. The attenuated thromboxane A2 and prostaglandin F2α may lead to less induction of the eosinophil chemokine Ccl11 expression in bronchial epithelial cells. In summary, our study demonstrates that Bmal1 ablation in macrophages attenuates eosinophilic inflammation in HDM-induced chronic lung allergy, which involves enhanced phagocytosis and reduced prostanoid secretion.


Assuntos
Asma , Eosinofilia , Hipersensibilidade , Humanos , Camundongos , Animais , Pyroglyphidae , Dinoprosta/metabolismo , Tromboxano A2/metabolismo , Pulmão , Alérgenos , Eosinofilia/metabolismo , Eosinofilia/patologia , Imunoglobulina E/metabolismo , Inflamação/patologia , Modelos Animais de Doenças
6.
J Surg Res ; 294: 249-256, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37925953

RESUMO

INTRODUCTION: Cardioplegia and cardiopulmonary bypass (CP/CPB) alters coronary arteriolar response to thromboxane A2 (TXA2) in patients undergoing cardiac surgery. Comorbidities, including hypertension (HTN), can further alter coronary vasomotor tone. This study investigates the effects of HTN on coronary arteriolar response to TXA2 pre and post-CP/CPB and cardiac surgery. MATERIALS AND METHODS: Coronary arterioles pre and post-CP/CPB were dissected from atrial tissue samples in patients with no HTN (NH, n = 9), well-controlled HTN (WC, n = 12), or uncontrolled HTN (UC, n = 12). In-vitro coronary microvascular reactivity was examined in the presence of TXA2 analog U46619 (10-9-10-4M). Protein expression of TXA2 receptor in the harvested right atrial tissue samples were measured by immunoblotting. RESULTS: TXA2 analog U46619 induced dose-dependent contractile responses of coronary arterioles in all groups. Pre-CPB contractile responses to U46619 were significantly increased in microvessels in the UC group compared to the NH group (P < 0.05). The pre-CP/CPB contractile responses of coronary arterioles were significantly diminished post-CP/CPB among the three groups (P < 0.05), but there remained an increased contractile response in the microvessels of the UC group compared to the WC and NH groups (P < 0.05). There were no significant differences in U46619-induced vasomotor tone between patients in the NH and WC groups (P > 0.05). There were no differences in expression of TXA2R among groups. CONCLUSIONS: Poorly controlled HTN is associated with increased contractile response of coronary arterioles to TXA2. This alteration may contribute to worsened recovery of coronary microvascular function in patients with poorly controlled HTN after CP/CPB and cardiac surgery.


Assuntos
Fibrilação Atrial , Procedimentos Cirúrgicos Cardíacos , Hipertensão , Humanos , Tromboxano A2/metabolismo , Tromboxano A2/farmacologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/metabolismo , Vasos Coronários , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Ponte Cardiopulmonar , Hipertensão/complicações
7.
Cells ; 12(24)2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38132095

RESUMO

In this study, we reported that novel single-chain fusion proteins linking thromboxane A2 (TXA2) receptor (TP) to a selected G-protein α-subunit q (SC-TP-Gαq) or to α-subunit s (SC-TP-Gαs) could be stably expressed in megakaryocytes (MKs). We tested the MK-released platelet-linked particles (PLPs) to be used as a vehicle to deliver the overexpressed SC-TP-Gαq or the SC-TP-Gαs to regulate human platelet function. To understand how the single-chain TP-Gα fusion proteins could regulate opposite platelet activities by an identical ligand TXA2, we tested their dual functions-binding to ligands and directly linking to different signaling pathways within a single polypeptide chain-using a 3D structural model. The immature MKs were cultured and transfected with cDNAs constructed from structural models of the individual SC-TP-Gαq and SC-TP-Gαs, respectively. After transient expression was identified, the immature MKs stably expressing SC-TP-Gαq or SC-TP-Gαs (stable cell lines) were selected. The stable cell lines were induced into mature MKs which released PLPs. Western blot analysis confirmed that the released PLPs were carrying the recombinant SC-TP-Gαq or SC-TP-Gαs. Flow cytometry analysis showed that the PLPs carrying SC-TP-Gαq were able to perform the activity by promoting platelet aggregation. In contrast, PLPs carrying SC-TP-Gαs reversed Gq to Gs signaling to inhibit platelet aggregation. This is the first time demonstrating that SC-TP-Gαq and SC-TP-Gαs were successfully overexpressed in MK cells and released as PLPs with proper folding and programmed biological activities. This bio-engineering led to the formation of two sets of biologically active PLP forms mediating calcium and cAMP signaling, respectively. As a result, these PLPs are able to bind to identical endogenous TXA2 with opposite activities, inhibiting and promoting platelet aggregation as reprogrammed for therapeutic process. Results also demonstrated that the nucleus-free PLPs could be used to deliver recombinant membrane-bound GPCRs to regulate cellular activity in general.


Assuntos
Megacariócitos , Tromboxanos , Humanos , Megacariócitos/metabolismo , Preparações de Ação Retardada , Plaquetas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Tromboxano A2/metabolismo
8.
Jt Dis Relat Surg ; 34(2): 279-288, 2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37462630

RESUMO

OBJECTIVES: This study aims to investigate the predictive value of bone morphogenetic protein-7 (BMP-7), thromboxane A2 (TXA2), and osteoprotegerin (OPG) for the prognosis of patients with distal radius fractures. PATIENTS AND METHODS: Between January 2021 and January 2022, a total of 124 patients (71 males, 53 females; mean age: 49.8±5.1 years; range, 34 to 68 years) with distal radius fractures were included in the fracture group. Healthy volunteers receiving physical examination in our hospital in the same period were included in the control group (n=50; 29 males, 21 females; mean age: 50.1±5.4 years; range, 35 to 68 years). The expressions of BMP-7, TXA2, and OPG in the peripheral blood were detected. In the fracture group, 124 patients underwent internal fixation after inclusion and followed for six months. The prognosis was evaluated based on the Gartland & Werley scoring system for wrist joint function. The factors influencing prognosis were analyzed, and the predictive values of BMP-7, TXA2, and OPG were calculated. RESULTS: Age, fracture classification, early loss of palmar tilt, late loss of palmar tilt, time to return to exercise after surgery, BMP-7, TXA2, and OPG were all factors influencing the prognosis (p<0.05). For predicting the prognosis, the area under the ROC curve of BMP-7 + TXA2 + OPG (0.928) was significantly larger than those of BMP-7 (0.810), TXA2 (0.856) and OPG (0.823) alone, and BMP-7 + TXA2 + OPG had the highest predictive efficiency. The BMP-7 was negatively correlated with TXA2 (r=-0.471), but positively correlated with OPG (r=0.437). CONCLUSION: The combined detection of BMP-7, OPG, and TXA2 is highly valuable for predicting the prognosis of patients with distal radius fractures.


Assuntos
Fraturas do Rádio , Fraturas do Punho , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteína Morfogenética Óssea 7 , Osteoprotegerina , Prognóstico , Fraturas do Rádio/cirurgia , Tromboxano A2 , Idoso
9.
Pharmacol Ther ; 248: 108478, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37321373

RESUMO

Over the last two decades, awareness of the (patho)physiological roles of thromboxane A2 signaling has been greatly extended. From humble beginnings as a short-lived stimulus that activates platelets and causes vasoconstriction to a dichotomous receptor system involving multiple endogenous ligands capable of modifying tissue homeostasis and disease generation in almost every tissue of the body. Thromboxane A2 receptor (TP) signal transduction is associated with the pathogenesis of cancer, atherosclerosis, heart disease, asthma, and host response to parasitic infection amongst others. The two receptors mediating these cellular responses (TPα and TPß) are derived from a single gene (TBXA2R) through alternative splicing. Recently, knowledge about the mechanism(s) of signal propagation by the two receptors has undergone a revolution in understanding. Not only have the structural relationships associated with G-protein coupling been established but the modulation of that signaling by post-translational modification to the receptor has come sharply into focus. Moreover, the signaling of the receptor unrelated to G-protein coupling has become a burgeoning field of endeavor with over 70 interacting proteins currently identified. These data are reshaping the concept of TP signaling from a mere guanine nucleotide exchange factors for Gα activation to a nexus for the convergence of diverse and poorly characterized signaling pathways. This review summarizes the advances in understanding in TP signaling, and the potential for new growth in a field that after almost 50 years is finally coming of age.


Assuntos
Transdução de Sinais , Tromboxanos , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Receptores de Tromboxano A2 e Prostaglandina H2/genética , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Tromboxano A2/metabolismo
10.
Adv Pharmacol ; 97: 133-165, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37236757

RESUMO

Cyclooxygenase (COX) isozymes, i.e., COX-1 and COX-2, are encoded by separate genes and are involved in the generation of the same products, prostaglandin (PG)G2 and PGH2 from arachidonic acid (AA) by the COX and peroxidase activities of the enzymes, respectively. PGH2 is then transformed into prostanoids in a tissue-dependent fashion due to the different expression of downstream synthases. Platelets present almost exclusively COX-1, which generates large amounts of thromboxane (TX)A2, a proaggregatory and vasoconstrictor mediator. This prostanoid plays a central role in atherothrombosis, as shown by the benefit of the antiplatelet agent low-dose aspirin, a preferential inhibitor of platelet COX-1. Recent findings have shown the relevant role played by platelets and TXA2 in developing chronic inflammation associated with several diseases, including tissue fibrosis and cancer. COX-2 is induced in response to inflammatory and mitogenic stimuli to generate PGE2 and PGI2 (prostacyclin), in inflammatory cells. However, PGI2 is constitutively expressed in vascular cells in vivo and plays a crucial role in protecting the cardiovascular systems due to its antiplatelet and vasodilator effects. Here, platelets' role in regulating COX-2 expression in cells of the inflammatory microenvironment is described. Thus, the selective inhibition of platelet COX-1-dependent TXA2 by low-dose aspirin prevents COX-2 induction in stromal cells leading to antifibrotic and antitumor effects. The biosynthesis and functions of other prostanoids, such as PGD2, and isoprostanes, are reported. In addition to aspirin, which inhibits platelet COX-1 activity, possible strategies to affect platelet functions by influencing platelet prostanoid receptors or synthases are discussed.


Assuntos
Aspirina , Prostaglandinas , Humanos , Ciclo-Oxigenase 2 , Aspirina/farmacologia , Aspirina/uso terapêutico , Tromboxano A2/fisiologia , Prostaglandina H2
11.
Prostaglandins Other Lipid Mediat ; 167: 106736, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37062326

RESUMO

Lysophosphatidic acid (LPA) is known to increase uterine contraction in the estrus cycle and early pregnancy, however, the effect of LPA in late pregnant uterus and its mechanisms are not clear. In the present study, we show the LPA receptor subtypes expressed and the mechanism of LPA-induced contractions in late pregnant mouse uterus. We determined the relative mRNA expression of LPA receptor genes by quantitative PCR and elicited log concentration-response curves to oleoyl-L-α-LPA by performing tension experiments in the presence and absence of nonselective and selective receptor antagonists and inhibitors of the TXA2 pathway. LPA1 was the most highly expressed receptor subtype in the late pregnant mouse uterus and LPA1/2/3 agonist (Oleoyl-L-α LPA) elicited increased contractions in this tissue that had lesser efficacy compared to oxytocin. LPA1/3 antagonist, Ki-16425, and a potent LPA1 antagonist (AM-095) significantly inhibited the LPA-induced contractions. Further, the nonselective COX inhibitor, indomethacin, and potent thromboxane A2 synthase inhibitor, furegrelate significantly impaired LPA-induced contractions. Moreover, selective thromboxane receptor (TP) antagonist, SQ-29548, and Rho kinase inhibitor, Y-27632 almost eliminated LPA-induced uterine contractions. LPA1 stimulation elicits contractions in the late pregnant mouse uterus using the contractile prostanoid, TXA2 and may be targeted to induce labor in uterine dysfunctions/ dystocia.


Assuntos
Tromboxano A2 , Contração Uterina , Animais , Feminino , Camundongos , Gravidez , Indometacina/farmacologia , Lisofosfolipídeos/farmacologia , Contração Muscular/fisiologia , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo
12.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982853

RESUMO

Coumarin derivatives have been recognized for their antithrombotic, anti-inflammatory, and antioxidant properties, and daphnetin is one of the natural coumarin derivatives isolated from Daphne Koreana Nakai. Although the pharmacological value of daphnetin is well documented in diverse biological activities, its antithrombotic effect has not been studied to date. Here, we characterized the role and underlying mechanism of daphnetin in the regulation of platelet activation using murine platelets. In order to check the effect of daphnetin on platelet function, we first measured the effect of daphnetin on platelet aggregation and secretion. Collagen-induced platelet aggregation and dense granule secretion were partially inhibited by daphnetin. Interestingly, 2-MeSADP-induced secondary waves of aggregation and secretion were completely inhibited by daphnetin. It is known that 2-MeSADP-induced secretion and the resultant secondary wave of aggregation are mediated by the positive feedback effect of thromboxane A2 (TxA2) generation, suggesting the important role of daphnetin on TxA2 generation in platelets. Consistently, daphnetin did not affect the 2-MeSADP-induced platelet aggregation in aspirinated platelets where the contribution of TxA2 generation was blocked. Additionally, platelet aggregation and secretion induced by a low concentration of thrombin, which is affected by the positive feedback effect of TxA2 generation, were partially inhibited in the presence of daphnetin. Importantly, 2-MeSADP- and thrombin-induced TxA2 generation was significantly inhibited in the presence of daphnetin, confirming the role of daphnetin on TxA2 generation. Finally, daphnetin significantly inhibited 2-MeSADP-induced cytosolic phospholipase A2 (cPLA2) and ERK phosphorylation in non-aspirinated platelets. Only cPLA2 phosphorylation, not ERK phosphorylation, was significantly inhibited by daphnetin in aspirinated platelets. In conclusion, daphnetin plays a critical role in platelet function by inhibiting TxA2 generation through the regulation of cPLA2 phosphorylation.


Assuntos
Trombina , Tromboxanos , Animais , Camundongos , Plaquetas , Fibrinolíticos/farmacologia , Agregação Plaquetária , Trombina/farmacologia , Tromboxano A2 , Umbeliferonas/farmacologia , Fosfolipases A2 Citosólicas/metabolismo
13.
Peptides ; 164: 170990, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36894067

RESUMO

Since the AT2-receptor (AT2R) agonist C21 has structural similarity to the AT1-receptor antagonists Irbesartan and Losartan, which are antagonists not only at the AT1R, but also at thromboxane TP-receptors, we tested the hypothesis that C21 has TP-receptor antagonistic properties as well. Isolated mouse mesenteric arteries from C57BL/6 J and AT2R-knockout mice (AT2R-/y) were mounted in wire myographs, contracted with either phenylephrine or the thromboxane A2 (TXA2) analogue U46619, and the relaxing effect of C21 (0.1 nM - 10 µM) was investigated. The effect of C21 on U46619-induced platelet aggregation was measured by an impedance aggregometer. Direct interaction of C21 with TP-receptors was determined by an ß-arrestin biosensor assay. C21 caused significant, concentration-dependent relaxations in phenylephrine- and U46619-contracted mesenteric arteries from C57BL/6 J mice. The relaxing effect of C21 was absent in phenylephrine-contracted arteries from AT2R-/y mice, whereas it was unchanged in U46619-contracted arteries from AT2R-/y mice. C21 inhibited U46619-stimulated aggregation of human platelets, which was not inhibited by the AT2R-antagonist PD123319. C21 reduced U46619-induced recruitment of ß-arrestin to human thromboxane TP-receptors with a calculated Ki of 3.74 µM. We conclude that in addition to AT2R-agonistic properties, C21 also acts as low-affinity TP-receptor antagonist, and that - depending on the constrictor - both mechanisms can be responsible for C21-induced vasorelaxation. Furthermore, by acting as a TP-receptor antagonist, C21 inhibits platelet aggregation. These findings are important for understanding potential off-target effects of C21 in the preclinical and clinical context and for the interpretation of C21-related myography data in assays with TXA2-analogues as constrictor.


Assuntos
Receptores de Tromboxanos , Tromboxanos , Humanos , Camundongos , Animais , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Camundongos Endogâmicos C57BL , Tromboxano A2/farmacologia , Fenilefrina/farmacologia , Angiotensinas
15.
Cells ; 12(3)2023 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-36766790

RESUMO

Obesity is a complex disease highly related to diet and lifestyle and is associated with low amount of thermogenic adipocytes. Therapeutics that regulate brown adipocyte recruitment and activity represent interesting strategies to fight overweight and associated comorbidities. Recent studies suggest a role for several fatty acids and their metabolites, called lipokines, in the control of thermogenesis. The purpose of this work was to analyze the role of several lipokines in the control of brown/brite adipocyte formation. We used a validated human adipocyte model, human multipotent adipose-derived stem cell model (hMADS). In the absence of rosiglitazone, hMADS cells differentiate into white adipocytes, but convert into brite adipocytes upon rosiglitazone or prostacyclin 2 (PGI2) treatment. Gene expression was quantified using RT-qPCR and protein levels were assessed by Western blotting. We show here that lipokines such as 12,13-diHOME, 12-HEPE, 15dPGJ2 and 15dPGJ3 were not able to induce browning of white hMADS adipocytes. However, both fatty acid esters of hydroxy fatty acids (FAHFAs), 9-PAHPA and 9-PAHSA potentiated brown key marker UCP1 mRNA levels. Interestingly, CTA2, the stable analog of thromboxane A2 (TXA2), but not its inactive metabolite TXB2, inhibited the rosiglitazone and PGI2-induced browning of hMADS adipocytes. These results pinpoint TXA2 as a lipokine inhibiting brown adipocyte formation that is antagonized by PGI2. Our data open new horizons in the development of potential therapies based on the control of thromboxane A2/prostacyclin balance to combat obesity and associated metabolic disorders.


Assuntos
Ácidos Graxos , Tromboxano A2 , Humanos , Tromboxano A2/metabolismo , Rosiglitazona/farmacologia , Ácidos Graxos/metabolismo , Adipócitos Marrons/metabolismo , Obesidade/metabolismo , Prostaglandinas I/metabolismo
16.
Endocrinology ; 164(3)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36592127

RESUMO

Excessive hepatic glucose production (HGP) is a major cause of fasting hyperglycemia in diabetes, and antihyperglycemic therapy takes center stage. Nonsteroidal anti-inflammatory drugs, such as acetylsalicylic acid (aspirin), reduce hyperglycemia caused by unrestrained gluconeogenesis in diabetes, but its mechanism is incompletely understood. Here, we reported that aspirin lowers fasting blood glucose and hepatic gluconeogenesis, corresponds with lower thromboxane A2 (TXA2) levels, and the hypoglycemic effect of aspirin could be rescued by TP agonist treatment. On fasting and diabetes stress, the cyclooxygenase (COX)/TXA2/thromboxane A2 receptor (TP) axis was increased in the livers. TP deficiency suppressed starvation-induced hepatic glucose output, thus inhibiting the progression of diabetes, whereas TP activation promoted gluconeogenesis. Aspirin restrains glucagon signaling and gluconeogenic gene expression (phosphoenolpyruvate carboxykinase [PCK1] and glucose-6-phosphatase [G6Pase]) through the TXA2/TP axis. TP mediates hepatic gluconeogenesis by activating PLC/IP3/IP3R signaling, which subsequently enhances CREB phosphorylation via facilitating CRTC2 nuclear translocation. Thus, our findings demonstrate that TXA2/TP plays a crucial role in aspirin's inhibition of hepatic glucose metabolism, and TP may represent a therapeutic target for diabetes.


Assuntos
Diabetes Mellitus , Hiperglicemia , Humanos , Glucagon/metabolismo , Tromboxano A2/metabolismo , Aspirina/farmacologia , Aspirina/metabolismo , Fígado/metabolismo , Glucose/metabolismo , Gluconeogênese , Diabetes Mellitus/metabolismo , Hipoglicemiantes , Hiperglicemia/metabolismo
17.
J Ethnopharmacol ; 300: 115701, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36089177

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Pueraria lobata (Willd.) Ohwi and Pueraria lobata var. thomsonii (Benth.) Maesen are nutritious medicine food homology plants that are widely used in the food and health products industry and are excellent natural materials for the development of new health foods, with great potential for domestic and foreign markets. Clinically, P. lobata and P. thomsonii are used to treat coronary heart disease, atherosclerosis, cerebral infarction and other cardiovascular diseases, and antithrombotic actions may be their core effect in the treatment of thrombotic diseases. However, the underlying mechanisms of the antithrombotic properties of P. lobata and P. thomsonii have not been clarified. METHODS: First, P. lobata and P. thomsonii were identified by high-performance liquid chromatography (HPLC). An arteriovenous bypass thrombosis rat model was established. Thrombus dry‒wet weight, platelet accumulation rate and the four coagulation indices, including activated partial thromboplastin time (APTT), prothrombin time (PT), thrombin time (TT) and fibrinogen (FIB), were detected in plasma to manifest the P. lobata and P. thomsonii antithrombotic function. Network pharmacology and molecular docking methods were used to obtain key targets and verify reliability. David 6.8 was used for GO and KEGG analyses to explore pathways and potential targets for P. lobata and P. thomsonii antithrombotic functions. Prostaglandin I2 (PGI2), thromboxane A2 (TXA2), cyclooxygenase 2 (COX-2), myeloperoxidase (MPO) and endothelial nitric oxide synthase (eNOS) were tested by enzyme-linked immunosorbent assay (ELISA). RESULTS: The results indicated that P. lobata and P. thomsonii can reduce thrombus dry‒wet weight and platelet accumulation in rats and inhibit TT, APTT, FIB, and PT. A comprehensive network pharmacology approach successfully identified 9 active ingredients in P. lobata and P. thomsonii. The main active ingredients include polyphenols, amino acids and flavonoids. A total of 15 antithrombotic function targets were obtained, including 3 key targets (PTGS2, NOS3, MPO). Pathway analysis showed 10 significant related pathways and 29 biological processes. P. lobata and P. thomsonii inhibited platelet aggregation by upregulating PGI2 and downregulating TXA2, inhibited PTGS2 to reduce inflammation, and increased the level of eNOS to promote vasodilation. In addition, P. lobata and P. thomsonii alleviated oxidative stress by increasing SOD levels and significantly decreasing MDA contents. CONCLUSION: The results of the study further clarify the antithrombotic mechanism of action of P. lobata and P. thomsonii, which provides a scientific basis for the development of new drugs for thrombogenic diseases and lays the foundation for the development of P. lobata and P. thomsonii herbal resources and P. lobata and P. thomsonii health products.


Assuntos
Pueraria , Trombose , Aminoácidos , Animais , Ciclo-Oxigenase 2 , Epoprostenol/uso terapêutico , Fibrinogênio , Fibrinolíticos/farmacologia , Fibrinolíticos/uso terapêutico , Flavonoides/uso terapêutico , Simulação de Acoplamento Molecular , Farmacologia em Rede , Óxido Nítrico Sintase Tipo III , Peroxidase , Pueraria/química , Ratos , Reprodutibilidade dos Testes , Superóxido Dismutase , Trombose/tratamento farmacológico , Tromboxano A2
18.
Prostaglandins Other Lipid Mediat ; 165: 106700, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36528331

RESUMO

In patients with coronary artery disease (CAD), plasma levels of pro-inflammatory lipid mediators such as PGE2 and TxA2 are increased. They could increase vascular contraction while EPA and DHA could reduce it. Studies have been mostly conducted on animal vessels. Therefore, the aim of the study was to investigate if EPA, DHA, and DHA-derived metabolites: RvD1, RvD5 and MaR1 can modulate contraction of human coronary arteries (HCA) induced by PGE2 or TxA2 stable analogue (U46619). DHA and EPA relaxed HCA pre-contracted with PGE2. 18 h-incubation with DHA but not EPA reduced the PGE2-induced contractions. Pre-incubation with RvD1, RvD5 and MaR1 reduced the PGE2-induced contractions. Indomethacin did not significantly modify the PGE2 responses. L-NOARG (inhibitor of nitric oxide synthase), reduced only the PGE2-induced contractions in RvD1-treated rings. Finally, FPR2/ALX, GPR32 and LGR6 receptors are detected in HCA by immunofluorescence. Our results indicate that DHA and its metabolites could be beneficial for HCA blood flow and could be a therapeutic perspective for patients with CAD.


Assuntos
Vasos Coronários , Dinoprostona , Animais , Humanos , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico , Dinoprostona/farmacologia , Ácidos Docosa-Hexaenoicos/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Tromboxano A2 , Ácido Eicosapentaenoico
19.
J Am Heart Assoc ; 11(23): e027538, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36382966

RESUMO

Background Metabolic syndrome is characterized by insulin resistance, which impairs intracellular signaling pathways and endothelial NO bioactivity, leading to cardiovascular complications. Extracellular signal-regulated kinase (ERK) is a major component of insulin signaling cascades that can be activated by many vasoactive peptides, hormones, and cytokines that are elevated in metabolic syndrome. The aim of this study was to clarify the role of endothelial ERK2 in vivo on NO bioactivity and insulin resistance in a mouse model of metabolic syndrome. Methods and Results Control and endothelial-specific ERK2 knockout mice were fed a high-fat/high-sucrose diet (HFHSD) for 24 weeks. Systolic blood pressure, endothelial function, and glucose metabolism were investigated. Systolic blood pressure was lowered with increased NO products and decreased thromboxane A2/prostanoid (TP) products in HFHSD-fed ERK2 knockout mice, and Nω-nitro-l-arginine methyl ester (L-NAME) increased it to the levels observed in HFHSD-fed controls. Acetylcholine-induced relaxation of aortic rings was increased, and aortic superoxide level was lowered in HFHSD-fed ERK2 knockout mice. S18886, an antagonist of the TP receptor, improved endothelial function and decreased superoxide level only in the rings from HFHSD-fed controls. Glucose intolerance and the impaired insulin sensitivity were blunted in HFHSD-fed ERK2 knockout mice without changes in body weight. In vivo, S18886 improved endothelial dysfunction, systolic blood pressure, fasting serum glucose and insulin levels, and suppressed nonalcoholic fatty liver disease scores only in HFHSD-fed controls. Conclusions Endothelial ERK2 increased superoxide level and decreased NO bioactivity, resulting in the deterioration of endothelial function, insulin resistance, and steatohepatitis, which were improved by a TP receptor antagonist, in a mouse model of metabolic syndrome.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Animais , Camundongos , Síndrome Metabólica/genética , MAP Quinases Reguladas por Sinal Extracelular , Receptores de Tromboxano A2 e Prostaglandina H2 , Tromboxano A2 , Prostaglandinas , Camundongos Knockout , Insulina
20.
Cells ; 11(20)2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36291093

RESUMO

Calcium signalling in platelets through store operated Ca2+ entry (SOCE) or receptor-operated Ca2+ entry (ROCE) mechanisms is crucial for platelet activation and function. Orai1 proteins have been implicated in platelet's SOCE. In this study we evaluated the contribution of Orai1 proteins to these processes using washed platelets from adult mice from both genders with platelet-specific deletion of the Orai1 gene (Orai1flox/flox; Pf4-Cre termed as Orai1Plt-KO) since mice with ubiquitous Orai1 deficiency show early lethality. Platelet aggregation as well as Ca2+ entry and release were measured in vitro following stimulation with collagen, collagen related peptide (CRP), thromboxane A2 analogue U46619, thrombin, ADP and the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) inhibitor thapsigargin, respectively. SOCE and aggregation induced by Thapsigargin up to a concentration of 0.3 µM was abrogated in Orai1-deficient platelets. Receptor-operated Ca2+-entry and/or platelet aggregation induced by CRP, U46619 or thrombin were partially affected by Orai1 deletion depending on the gender. In contrast, ADP-, collagen- and CRP-induced aggregation was comparable in Orai1Plt-KO platelets and control cells over the entire concentration range. Our results reinforce the indispensability of Orai1 proteins for SOCE in murine platelets, contribute to understand its role in agonist-dependent signalling and emphasize the importance to analyse platelets from both genders.


Assuntos
Plaquetas , Cálcio , Proteína ORAI1 , Animais , Feminino , Masculino , Camundongos , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/metabolismo , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Plaquetas/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Colágeno/metabolismo , Proteína ORAI1/metabolismo , Peptídeos/metabolismo , Molécula 1 de Interação Estromal/metabolismo , Tapsigargina/farmacologia , Trombina/farmacologia , Tromboxano A2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...